If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10^2+10^2=x^2
We move all terms to the left:
10^2+10^2-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+200=0
a = -1; b = 0; c = +200;
Δ = b2-4ac
Δ = 02-4·(-1)·200
Δ = 800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{800}=\sqrt{400*2}=\sqrt{400}*\sqrt{2}=20\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{2}}{2*-1}=\frac{0-20\sqrt{2}}{-2} =-\frac{20\sqrt{2}}{-2} =-\frac{10\sqrt{2}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{2}}{2*-1}=\frac{0+20\sqrt{2}}{-2} =\frac{20\sqrt{2}}{-2} =\frac{10\sqrt{2}}{-1} $
| 9z+9z=18 | | -6(x+5)-3=-9+2x | | -3(x+7)=3x+21 | | 2/4n=10 | | 12.5=(x/5) | | 4(d+2)-2d=6+4d | | w+86=2 | | 4(5x+3)=14x30 | | 5(a+12)=10 | | 7x²-26x-8=0 | | (⅛)=z-(¾) | | (20*20)+(48*48)=(x*x) | | -7y+5(y-3)=-23 | | 4(2x-2)-2=4(x-5)+46 | | v–25=2 | | -7x+7=1-6x | | r2+3=6 | | -7v+2(v+6)=17 | | 2(3y=8)=70 | | (21*21)+(17*17)=(x*x) | | 16=6c+2c | | -17x+33x=28 | | 7(4-6x)=308 | | 20-5x=75-(-5)×(-3) | | -2x-6=2-4x-(x-1)) | | -17x=33x=28+ | | 6b-7=-13+5b | | 4x-2(x+6)=36 | | 5(2x-4)=4x+7-3x | | -17x=33x=288 | | 4=-u–95 | | -33=-8w+3(w-6) |